Design and Development of Methodologies, Technologies, and Tools to Support People with Disabilities

Giuseppe AIRÒ FARULLA

Advisor: prof. Paolo PRINETTO

Doctoral Dissertation

Doctoral Program in Computer and Control Engineering

Politecnico di Torino

29th cycle

October the 4th, 2017

The Goal

- Research in the realm of Information Technology for, and with, individuals with disabilities
- Enable new interaction paradigms between individuals and machines
 - Empowering and assisting individuals
 - Interaction with Robots

The Means

- Technology can ease and improve everyday life of disabled individuals
- Strict and direct contact with associations and users
- Users actively involved in the overall development process
 - From end-users to begin-users

My Contributions

My Contributions - How

- Novel interaction paradigms as Assistive Technology
 - Interfaces to let humans interact with robots in simple ways
- Novel applications of Computer Vision, Image Processing, and Robotics
- Experimental validation

Scientific Outcomes

Methodologies

- Cross-domain
- Modular framework for Gesture-based robot teleoperation
- Non-linear optimization

Tools

- Real-time reliable Hand Tracking and Hand Gesture Recognition
- Segmentation of touching characters in math formulae
- Released Open Source: https://github.com/guybrush90/OCR

Publications

- 4 Journal Papers + 1 to appear
- 6 Conference Papers

Outline

- Introduction to Disabilities and Inclusive Interfaces
- Hand Gestures-based Interfaces
- Minor Contribution
- Conclusions and Future Research

Outline

- Introduction to Disabilities and Inclusive Interfaces
- Hand Gestures-based Interfaces
- Minor Contribution
- Conclusions and Future Research

Individuals with Disabilities

- Have impairments that hinder their full and effective participation in society on an equal basis with others
 - UN Convention on the Rights of People with Disabilities
 - World Health Organization
 - European Union

Some Data...

- National level (ISTAT, 2015)
 - **3.1 millions of people** have received a certification of disability (law n. 104, 1992)
 - Only the 3.5% has entered the labor market

Some Data...

- National level (ISTAT, 2015)
 - **3.1 millions of people** have received a certification of disability (law n. 104, 1992)
 - Only the 3.5% has entered the labor market
- European level (Eurostat, 2012)
 - 44 millions of people self-reports serious difficulties in basic daily activities

Some Data...

- National level (ISTAT, 2015)
 - 3.1 millions of people have received a certification of disability (law n. 104, 1992)
 - Only the 3.5% has entered the labor market
- European level (Eurostat, 2012)
 - 44 millions of people self-reports serious difficulties in basic daily activities
- Worldwide level (US Census Bureau, 2010)
 - Only the 35% of the working-able individuals with disabilities has entered the labor market

- Humans eventually need to interact with a machine
 - Human-Machine Interfaces
- To fully support the social inclusion of individuals with disabilities HMIs should be
 - Dependable

- Humans eventually need to interact with a machine
 - Human-Machine Interfaces
- To fully support the social inclusion of individuals with disabilities HMIs should be
 - Dependable
 - Low-cost

- Humans eventually need to interact with a machine
 - Human-Machine Interfaces
- To fully support the social inclusion of individuals with disabilities HMIs should be
 - Dependable
 - Low-cost
 - Real-time

- Humans eventually need to interact with a machine
 - Human-Machine Interfaces
- To fully support the social inclusion of individuals with disabilities HMIs should be
 - Dependable
 - Low-cost
 - Real-time
 - Simple to use

- Humans eventually need to interact with a machine
 - Human-Machine Interfaces
- To fully support the social inclusion of individuals with disabilities HMIs should be
 - Dependable
 - Low-cost
 - Real-time
 - Simple to use
 - Designed for Each

- Humans eventually need to interact with a machine
 - Human-Machine Interfaces
- To fully support the **social inclusion** of individuals with disabilities HMIs should be
 - Dependable
 - Low-cost
 - Real-time
 - Simple to use
 - Designed for Each
 - Designed for All

Design for Each

- Focus on the individual to be assisted and empowered
 - Rather than on the solution proposed
- Do blind individuals need a laser cane?
 - (Bolgiano and Meeks, 1967)
 - (Benjamin and Ali, 1974)

Design for All

- Universal design
 - Concept derived from architecture: barriers-free
- Modern technology is mature to guarantee to everyone a fair interaction with machines
 - **Gestures** represent a valid alternative to joysticks and keyboards

Outline

- Introduction to Disabilities and Inclusive Interfaces
- Hand Gestures-based Interfaces
 - State-of-the-art and Enabling Technology
 - Challenges
 - Proposed Solutions and Their Validation
 - Applications
- Minor Contribution
- Conclusions and Future Research

Gestures

- Voluntary and expressive motion of the body that contain information (Kurtenbach and Hulteen, 1990)
- Human individuals find natural to interact via gestures
 - Safety net in foreign contexts
- Does the same hold for interacting with machines?
 - Glove to interact with a computer (Zimmerman et al., 1987)

My Research

- Simplify interaction patterns
- Focus on Hand Tracking
 - Simple to use: No training required
 - Low-cost enabling technology

Hand Tracking

Identify hand pose

- Set of values to allow unambiguous representation of the global pose a single hand
 - Rotation angles of the hand's fingers
 - Position and orientation of the wrist with respect to a reference frame

Hand Tracking – The Issues

27 degrees of freedom

Hand Tracking – The Issues

- Complex motion compressed in short time
 - Wide movements
 - Movements of small sub-parts
- Self-occlusions

Hand Tracking – Approaches

- Invasive approaches
 - Con's: Require training and precise setup
- Enabling technology
 - Electromyography
 - Markers

Hand Tracking – Approaches

- Non-invasive approaches
 - Pro's: No constraints on setup
- Classification
 - 2D
 - 3D
 - Partial tracking
 - Full tracking

Hand Tracking – The Devices

- Consumer Depth Sensors
 - Capture **depth information** (distance to the sensor) in a per-pixel basis
 - Microsoft Kinect (RGB + D camera)
 - Leap Motion

Hand Tracking – My Contributions

Innovative usage of two techniques

- A Generative technique minimizing the difference between the observed hand pose and a 3D hand model
 - Particle Swarm Optimization (Oikonomidis et al., 2011)
- A Discriminative technique trained for mapping the extracted features to the hand pose
 - Random Forest (Shotton et al., 2013) (Keskin et al., 2013)

Hand Tracking – My Contributions

Enabling Human-Robot collaboration

Particle Swarm Optimization

- Swarm of particles with own positions and velocities
- Positions evolve towards the global minimum of a difference function E
- Velocities change to reflect
 - Cognitive components private to the particles
 - Social components shared among the swarm

Particle Swarm Optimization

- Particles: red crosses
- Velocities: yellow arrows
- 3D Example

Generative Solution – Design

- Input
 - Single markerless observation from depth camera
 - Output of previous iterations
- Output
 - Hand pose
- Core processing in C++
 - Python wrappers for modularity

Generative Solution – Implementation

- 27-dimensional hand model
- Difference function E to be minimized between hand model h and multiframe depth observations D

$$E(h,D) = \sum_{I \in D} G(I,h,C(I)) + \lambda_k \cdot kc(h)$$

$$G(I,h,C) = \frac{\sum o_s(I) \oplus r_s(h,C)}{\sum o_s(I) + \sum r_s(h,C) + \varepsilon} + \lambda \frac{\sum o_d(I) \cdot r_s(h,C)}{\sum r_e(h,C) + \varepsilon}$$

Generative Solution – Validation

- Qualitative analysis
- Test if the human eye perceives the tracking as proper
 - If so the tracking algorithm is accurate enough

Generative Solution – Validation

- 20 fundamental hand poses (Brentari, 1998)
- Survey to rate tracking accuracy in a 1-to-5 scale
 - Average over 87 anonymous volunteers
 - No previous knowledge on the system

Generative Solution – Validation

O Pro's

- Very accurate
- Does not require to learn hand poses

Con's

- Performances affected by wrong swarm initialization
- Does not match real-time constraints

Random Forest

Discriminative Solution – Design

- Input
 - Single markerless static observation from depth camera
- Output
 - Hand pose
 - Recognized gesture
- Core processing in C++
 - Optimization in OpenCL
 - Python wrappers for modularity

Discriminative Solution – Implementation

- The hand is isolated from the background
 - OpenNi hand tracker
- Each pixel x is described on-the-fly through the feature

$$\mathscr{F}(\mathbf{x}) = \{F_{\mathbf{u},\mathbf{v}}(D,\mathbf{x}), \|\mathbf{u}\| < R, \|\mathbf{v}\| < R\}; F_{\mathbf{u},\mathbf{v}} = D\left(x + \frac{\mathbf{u}}{D(\mathbf{x})}\right) - D\left(x + \frac{\mathbf{v}}{D(\mathbf{x})}\right)$$

- Invariant to in-plane and depth translations
 - Not invariant to rotations
 - Large training set

Discriminative Solution – Implementation

- First Random Forest classifier
 - Label segmented depthmaps to hand joints
- Mean Shift algorithm
 - Outliers reduction
- Second Random Forest classifier
 - Map the hand pose to a gesture
 - Resorts to joint-to-joint Euclidean distances for all the joints pairs

$$\mathscr{P}(\mathscr{S}) = \left\{ d_{k,l} = \left\| \mathbf{j}_k - \mathbf{j}_l \right\|, \forall \mathbf{j}_k, \mathbf{j}_l \in \mathscr{S}, k < l \right\}$$

Discriminative Solution – Classification

X	×	
Χ×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X
x		

Parameter	Value
R	30 pixel
Threshold $ au$	10
Sample pixels per image	2,000
Trees in the forest	3
Depth of each tree	18

Discriminative Solution – Training

- Datasets of human hand poses
- Synthetic datasets
 - Designed with target applications in mind

Discriminative Solution – Validation

- Quantitative analysis
- Test if the recognized gesture is correct
 - If so the tracking algorithm and its training are accurate enough

Discriminative Solution – Validation

- 16 fundamental hand poses (Brentari, 1998)
- 16 volunteers, no previous knowledge on the system
 - 15 used to train the classifiers + 1 used for testing
 - Average over 10 leave-one-out cross validation

	s	Y	I	A	О	P	ĸ	L	D	C	н	x	В	w	v	F
s	90	4	0	6	0	0	0	o	0	0	0	0	o	o	0	О
Y	21	44	0	32	o	0	0	o	0	0	0	0	0	3	0	О
I	12	3	66	16	0	0	0	0	3	0	0	0	0	0	0	О
A	0	0	0	100	o	0	0	o	0	0	0	0	0	О	0	О
o	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0
P	0	0	0	75	8	9	0	0	0	0	0	8	0	0	0	О
ĸ	O	0	0	o	0	39	36	17	4	0	0	4	0	0	0	О
L	7	0	0	0	0	0	0	93	0	0	0	0	0	0	0	О
D	0	0	0	3	0	0	3	10	84	0	0	0	0	0	0	О
C	0	0	0	o	0	0	0	3	0	88	0	0	3	0	0	6
н	0	0	0	0	o	0	0	6	6	0	76	6	0	o	6	О
x	5	0	0	0	o	0	0	o	15	0	0	75	0	5	0	О
В	0	0	0	0	0	0	0	0	0	0	0	0	87	13	0	О
w	0	0	0	0	0	4	0	0	0	0	0	0	8	79	9	О
v	0	0	0	0	0	0	3	0	0	0	0	0	0	9	88	О
F	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	97

Generative Solution – Validation

O Pro's

- Accurate
- Matches real-time constraints

Con's

Requires to learn hand poses, although off-line

Gestures for Robot Teleoperation

Gestures for Robot Teleoperation

Robot Operating System

- Real-time control of distributed robotic interfaces through hand gestures
- Network infrastructure: ROS

- Phase I: Input Customization
 - Tuning the Hand Tracker

- Phase II: Output Customization
 - Describing the robotic interface(s)

Phase III: Deploy

Teleoperation – Publication

To appear in Journal of Science Robotics

Teleoperation – Application I

Tactile Sign Languages

- Allowing remote and 1-to-many communication
 - Signer interacts with the Input Hand Gesture Recognition Module
 - Microsoft Kinect
 - Receivers interact with the Output Module
 - 3D-printed anthropomorphic hands
 - Innovative **low-cost** design <1K€ cost

The architecture

 Hand Tracker trained with hand poses typical in Sign Languages

- Validated with 7 volunteers + 1 proficient signer
 - Reliability of communication pipeline > 73%
- Published in International Journal of Advanced Robotic
 Systems

Teleoperation – Application II

Robot-mediated Rehabilitation

- Allowing remote rehabilitative exercises
 - Therapist interacts with the Input Hand Gesture Recognition Module
 - Microsoft Kinect
 - Receivers interact with the Output Module
 - Hand Exoskeleton HX

The architecture

 Hand Tracker trained with hand poses typical in rehabilitative exercises

- Validated with 6 volunteers + 1 therapist
 - Error between the Hand Exoskeleton position and the pose commanded by the therapist < 10°
 - Communication pipeline latency < 200ms
- Published in Sensors Journal

A novel tele-rehabilitation system based on a single depth-camera and HX

Outline

- Introduction to Disabilities and Inclusive Interfaces
- Hand Gestures-based Interfaces
- Minor Contribution
 - Optical Character Recognition for Scientific Texts
- Conclusions and Future Research

Methodologies – Application

Inclusive Math Texts

A different domain

Research on

- Multi-features segmentation of touching characters through manyvalued logic
- Knowledge from application experts encoded and finely tuned through Particle Swarm Optimization

Outcomes

- Accuracy with challenging symbols in presence of noise > 80%
- Published in Expert Systems with Applications

Outline

- Introduction to Disabilities and Inclusive Interfaces
- Hand Gestures-based Interfaces
- Minor Contribution
- Conclusions and Future Research

Conclusions

- Cross-domain methodologies
 - Valid for several disabilities
 - Considerable use cases enabled
- Tools
 - Real-time reliable Hand Tracking and Hand Gesture Recognition
 - Segmentation of touching characters in math formulae
- Strict and direct collaboration with users

Collaborations

- International Project
 - H2020 Project SIGN-HUB
- National Project
 - Smart Cities Under 30 MIUR Project PARLOMA
- Associations
 - Lega del Filo d'Oro ONLUS
 - Unione Italiana Ciechi e Ipovedenti ONLUS
 - Istituto di Ricerca e Formazione
- Universities
 - National Laboratory CINI AsTech
 - Institute of Electronics, Computer, and Telecommunication Engineering
 - Scuola Sant'Anna di Pisa
 - Università di Torino

Future Research

Hand Tracking

- In-depth analysis with extensive experimental campaigns
- Boost performances by means of technological advances
- Alternative applications for the Teleoperation pipeline
 - Surgeon robots
 - Industrial robots for manipulating heavy, small, and dangerous items

Thanks for Your Attention

